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SADDLEPOINT APPROXIMATION AND FIRST-ORDER CORRECTION 

TERM TO THE JOINT PROBABILITY DENSITY FUNCTION 

OF M QUADRATIC AND LINEAR FORMS IN K GAUSSIAN 

RANDOM VARIABLES WITH ARBITRARY MEANS AND COVARIANCES 

INTRODUCTION 

When K normalized Gaussian random variables (RVs) {g(k)} are 

squared and summed, the resultant z is called a chi-squared 

variate with K degrees of freedom, and the probability density 

function (PDF) of RV z is available in a closed form involving an 

exponential.  If constants {c(k)} are added to each of the RVs 

{g(k)} before squaring and summation, the PDF of the resultant z 

is called a noncentral chi-squared variate with K degrees of 

freedom, and is again available in a closed form, this time 

involving a Bessel function and an exponential.  However, 

virtually any additional complexity beyond this case results in a 

RV z for which the corresponding PDF is analytically intractable. 

However, in these one-dimensional cases of RV z, the moment 

generating function (MGF) of z is frequently available in closed 

form, and a numerical technique involving fast Fourier transforms 

(FFTs) can be efficiently employed to get numerous quick and 

accurate values for the PDF, as well as the exceedance 

distribution function, at arbitrary points of interest, whether 

near the mean of RV z or on the tails of the distribution of z 



(references 1 through 5).  Thus, the one-dimensional statistical 

problem involving quadratic forms of Gaussian RVs is in good 

shape numerically. 

The situation in M dimensions is much more difficult.  Even 

if the joint M-dimensional MGF of a random vector (RV), denoted 

by column vector z = [z(l) ... z(M)]', is available in closed 

form, its inverse M-dimensional Laplace or Fourier transform back 

into the PDF domain cannot be accomplished analytically, except 

in the simplest of cases.  Also, numerical evaluation of the 

pertinent M-dimensional integral for the joint PDF cannot be done 

accurately for M greater than four or so.  These conditions force 

acceptance of an approximation to the M-dimensional PDF of RV z; 

also, they force the effort to be concentrated on the evaluation 

of the joint PDF at very few points in M-dimensional PDF space, 

due to the extensive numerical effort and execution time involved 

in the accurate evaluation of multiple integrals. 

The M-dimensional PDF approximation adopted here is that 

obtained via the saddlepoint (SP) method, with a first-order 

correction term (reference 6, page 180).  The saddlepoint 

approximation (SPA) is accurate on the tails of the joint PDF, as 

well as near the mean of the distribution.  For its evaluation, 

the SPA requires the calculation of some partial derivatives of 

the joint MGF up through fourth-order; evaluation of these 

derivatives will consume much of the effort in this report. 



EXAMPLE PROBLEMS 

CORRELATION ESTIMATES 

Let w = [w(l) ... w(K)]' be a Kxl real Gaussian RV with Kxl 

mean vector r and KxK positive-definite covariance matrix R; that 

is, 

E{w} = r ,   E{(w - r)(w - r)'} - R , (1) 

and E{ } denotes an expectation.  An autocorrelation estimate of 

sequence w at delay n is available according to 

K 
a(n) = 2Z]  w<k) w<k - n)  for n=0:K-l . (2) 

k=n+l 

Suppose, for example, that only the correlation estimates at 

delays n = 0, 1, 3, and 7 are of interest; that is, M = 4 and 

RV z has components 

z(l) = a(0),  z(2) = a(l),  z(3) = a(3),  z(4) = a(7) .   (3) 

The problem of interest is to obtain the joint PDF of RV z for 

arbitrary sample size K and statistics r and R. 

The quantities in equations (2) and (3) can be written as 

quadratic forms 

z(m) = w' P(m) w  for m=l:M , (4) 

where, for example, KxK matrices 



P(l) = 

10 0 
0 10 
0 0 1 P(2) - i 

0 10 0 
10 10 
0 10 1 (5) 

Matrix P(2) is nonzero only on the super- and sub-diagonals 

numbered 1; matrix P(3) is nonzero only on super- and sub- 

diagonals 3; and matrix P(4) is nonzero only on super- and 

sub-diagonals 7. 

If the sample mean is subtracted from data sequence w prior 

to calculation of correlation estimates (2), the quadratic forms 

for RV z in equation (4) still hold, but the elements of the 

matrices {P(m)} for m=l:M in equation (5) are changed.  For 

example, the j,k element of matrix P(l) is now S., - 1/K instead 

of S^k/ where 8., is the Kronecker delta; the remaining matrices 

{P(m)} are more complicated, but each element in matrix P(m) can 

be evaluated by means of a single sum. 

If the correlation estimates are to be unbiased, additional 

scale factors are required in equations (2) or (3).  Again, the 

quadratic forms in equation (4) are appropriate, but the elements 

of matrices {P(m)} require additional calculations involving the 

particular scale factors adopted. 

Equation (2) involves an aperiodic correlation of data w. 

The extension to cyclic correlation estimates {c(n)} can also be 



formulated in terms of quadratic forms (4).  Consider the cyclic 

correlation estimate at delay n = 1: 

z(2) = c(l) = a(l) + w(l) w(K) , (6) 

where the added term represents wraparound.  This RV immediately 

fits equation (4) if the two corner elements (upper right and 

lower left) in matrix P(2) (equation (5)) are changed from 0 to 

1.  Instead, for delay n = 2, c(2) requires four changes in its P 

matrix; namely, from 0 to 1 of the four elements immediately 

bordering the two corner elements.  This procedure extends to any 

delay n; the corresponding P matrix for cyclic correlation 

estimate c(n) will have K Is on the n-th super- and sub-diagonals 

and their wraparound extensions. 

Cross-correlation estimates from two different-length data 

sequences u and v can be written in the form 

z(m) = u' A(m) v for m=l:M , (7) 

where RV u is Jxl, RV v is Kxl, and matrix A(m) is JxK.  By 

defining augmented (J+K)xl RV w as [ur v']', equation (7) may be 

reformulated as 

z(m) = w' P(m) w for m=l:M , (8) 

where matrix P(m) is (J+K)x(J+K) for m=l:M.  Thus, cross- 

correlation estimates obtained from two different sequences can 

also be expressed as quadratic forms of a concatenated sequence. 



FILTERED SQUARED DATA 

Suppose data w in equation (1) is processed as follows: 

2 
x = A w ,   y(n) = x(n)   for n=l:N ,   z = B y ,        (9) 

where matrix A is NxK, matrix B is MxN, and y = [y(l) .... y(N)]'. 

Thus, Nxl RV x is a filtered (linearly transformed) version of 

data w, which is then squared and subjected to additional 

filtering, resulting in Mxl RV z.  The problem is to determine 

the joint M-dimensional PDF of RV z. 

By combining the operations in equation (9), the component 

RVs {z(m)} of z can be expressed as 

K 
z(m) = YZ,     P(m;k,l) w(k) w(l)  for m=l:M , (10) 

k,l=l 

where constants 

N 
P(m;k,l) = YZ,   B(m,n) A(n,k) A(n,l)  for m=l:M; k,l=l:K. (11) 

n=l 

Thus, the RVs {z(m)} in equations (9) and (10) can again be 

expressed as quadratic forms (4), where KxK matrices 

P(m) = [P(m;k,l); k,l=l:K]  for m=l:M (12) 

in terms of its elements calculated in equation (11).  That is, 

the classical filter-square-filter operation is basically a 

problem in finding the joint PDF of several statistically 

dependent quadratic forms. 



PROBLEM FORMULATION 

QUADRATIC AND LINEAR FORMS OF INTEREST 

The formulations above all resulted in purely quadratic forms 

for RV z = [z(l) ... z(M)]'.  More generally, interest here will 

be concentrated on the M quadratic and linear (QAL) forms 

z(m) = w' P(m) w + p(m)' w + q(m)  for m=l:M , (13) 

where RV w is Kxl, matrix P(m) is KxK, vector p(m) is Kxl, and 

scalar q(m) is lxl.  Also, every matrix P(m) for m=l:M is 

symmetric without loss of generality (see appendix A). 

RV w is presumed to have joint Gaussian statistics with Kxl 

mean vector r and KxK covariance matrix R, as in equation (1). 

Thus, equation (13) exhibits the most general second-order forms 

in correlated Gaussian RVs with arbitrary statistics.  Since all 

M components of RV z in equation (13) utilize the same Kxl RV w 

but in different combinations, these M components {z(m)} are 

statistically dependent on each other, in addition to being 

non-Gaussian.  These complications are what force the need to 

resort to an approximation for the desired joint PDF of RV z. 

There are five types of input information required to 

completely specify the QAL problem posed in equation (13).  They 

are: the Kxl mean vector r of Kxl RV w, the KxK covariance matrix 

R of Kxl RV w, the M matrices (P(m)} of size KxK, the M vectors 

{p(m)} of size Kxl, and the M scalars {q(m)} of size lxl. 



CONDENSATION OF QUADRATIC AND LINEAR PROBLEM 

The Kxl RV w can be expressed in terms of a set of K 

normalized RVs g = [g(l) ... g(K)]', which have zero mean and an 

identity covariance matrix, according to 

w = r + S' g ,   E{g} = 0 ,   E{g g'} = I , (14) 

where R = S' S.  For example, KxK matrix S can be the Cholesky 

decomposition of positive-definite covariance matrix R.  Then, by 

substitution of equation (14) into equation (13), there follows 

z(m) = g' C(m) g + v(m)' g + c(m)  for m=l:M , (15) 

where 

C(m) = S P(m) S' (symmetric  KxKT 

v(m) = S[p(m) + 2 P(m) r] (Kxl) 

c(m) = q(m) + p(m)' r + r' P(m) r   (lxl), 
for m=l:M .  (16) 

Now, RV z in equation (15) depends only on the three types of 

fundamental quantities given in equation (16).  This condensation 

or pre-processing of the input information will prove very useful 

later when the desired joint statistics (M-dimensional PDF) of RV 

z are derived. 

If mean vector r = 0 and all vectors p(m) = 0 for m=l:M, 

then all vectors v(m) = 0 for m=l:M, and equation (15) reduces to 

z(m) = g' C(m) g + q(m) for m=l:M.  This is called the purely 

quadratic case; its SPA and first-order correction term to the 

joint PDF of z is much simpler than for the general QAL problem. 



MOMENT GENERATING FUNCTION OF QUADRATIC AND LINEAR FORMS 

Let Mxl vector X have components 

X = [X(l) X(M)]' . (17) 

The joint MGF of M-dimensional RV z in equation (15) is defined 

as 

JJ(X)   = E{exp(X' z)} = E^exp 
M 

5 ! X(m) z(m) 
m=l 

= E{exp[g' D(X) g + t(X)' g + u(X)]} , 

where 

(18) 

M 
D(X) = YZ,   Mm) C(m) 

m=l 
(symmetric  KxK) , (19) 

and 

M 
t(X) = YZ   x<m) v(m) 

m=l 

M 
u(X) = YZ   X(m) c(m) 

m=l 

(Kxl) , 

(lxl) 

(20) 

(21) 

The constant quantities (C(m)}, {v(m)}f and {c(m)} were defined 

in equation (16) for m=l:M.  It should be observed that matrix 

functions D(X), t(X),,and u(X) are linear in the components 

{X(m)} of Mxl vector X.  The problem of interest now is to 

evaluate the K-dimensional statistical average in equation (18) 

in order to determine the M-dimensional MGF /j(X)   of RV z in 

closed form. 



Recall from equation (14) that Kxl RVs w and g are related by 

a linear transformation.  Since RV w was presumed to have 

Gaussian statistics, RV g must also have Gaussian statistics.  In 

fact, from equation (14), Gaussian RV g has a zero mean vector 

and an identity covariance matrix.  The joint PDF of RV g is then 

p(g) = (2n)"K/2 exp(- g' g/2)  for all g , (22) 

where g = [g(D ... g(K)]' is a K-dimensional field point.  The 

pertinent K-fold integral representation of equation (18) is 

fj(\)   = (2n)"K/2 J dg exp[-.5 g' Q(X) g + t(X)' g + u(X)] = 

exp[| t(X)' Q(X)-1 t(X) + u(X)l =  Li . 1  f (23) 
[det(Q(X))]'s 

where symmetric KxK matrix Q(X) is defined as 

Q(X) =1-2 D(X) . (24) 

The K-fold integral in equation (23) for the joint MGF //(X) 

converges only if all K of the eigenvalues of matrix Q(X) are 

positive.  Equivalently, all K of the eigenvalues of matrix D(X), 

defined in equation (19), must be less than 1/2.  This eigenvalue 

restriction establishes a boundary on allowed values of vector X 

in the M-dimensional X plane; in particular, the origin, X = 0, 

is always an allowed point, that is, a point at which the joint 

MGF (23) exists. 

10 



Although equation (23) is a closed-form expression for the 

joint MGF of RV z in equation (15), it contains numerous branch 

points and overlapping essential singularities in the complex X 

plane, which make it impossible to obtain the corresponding joint 

M-dimensional PDF analytically.  Furthermore, for M large, it is 

not possible to perform a numerical M-dimensional FFT.  Thus, it 

is necessary to resort to the SPA for the desired PDF in M 

dimensions. 

The corresponding joint cumulant generating function (CGF) to 

joint MGF (23) is 

X(X) = log fj{\)   - 

= - | log det(Q(X)) + | t(X)' Q(X)"1 t(X) + u(X) .      (25) 

in order to utilize the SPA and its first-order correction term, 

partial derivatives of joint CGF X(X), with respect to its M 

components {X(m)} up through the fourth order, must be 

determined.  One important feature of these derivations is that 

KxK symmetric matrix 

M 
Q(X) = 1-2 D(X) -1-2 XZ] X(m> C(m) (26) 

m=l 

is linear in components {X(m)}.  Here, equations (24) and (19) 

were used. 

11/(12 blank) 



M-DIMENSIONAL SADDLEPOINT APPROXIMATION 

M-DIMENSIONAL SADDLEPOINT IN X DOMAIN 

Suppose that the joint PDF of Mxl RV z defined in equation 

(15) is desired to be evaluated at a general Mxl field point 

z = [z(l) ... z(M)]'.  This PDF value is given in terms of the 

joint MGF fj(\)   by the M-dimensional integral 

p(z) = —± - [•••[ d\(l)  ... dX(M)  exp[- X' z] /y(X) = 
(i2it)n j,       j, 

°1  LM 

= ——j^ [•••[ dX(l)  ... dX(M)  exp[X(X) - X' z] , (27) 
(i2n)n f.       J 

ul  UM 

where contour C  in the complex X(m) plane goes from -i» to +i» 

and stays within the analytic boundary of the joint MGF //(X) . 

The SPA consists of locating these contours so that they pass 

through the M-dimensional SP of the integrand of equation (27), 

and then approximating the integrand values on the contours by a 

Gaussian M-dimensional mountain in the neighborhood of the peak 

at the SP.  Finally, this Gaussian approximation is extended to 

all values on the contours of integration, for which the modified 

M-dimensional integral is capable of evaluation in closed form. 

In order to determine the SP in the X plane, it is necessary 

to find the location of the minimum of the real quantity 

M 
X(X) - X' z = x(X) - YZ   Mm)   z(m) (28) 

m=l 

13 



in equation (27) for a real X vector.  Alternatively, this SP 

location is found by solving the M simultaneous nonlinear real 

equations 

9X(X 
awm) = z(m)  for m=1*M /  {X(m)} real (29) 

The real solution X = X(z) = [X(l)   X(M)]' is a function of 

the particular M-dimensional field point z of interest.  If this 

field point is changed, the M nonlinear equations (29) must be 

re-solved for the new SP. 

M-DIMENSIONAL SADDLEPOINT APPROXIMATION TO PDF OF z 

When the M-fold integration procedure above is carried out, 

the resulting SPA to the joint PDF is (reference 6) 

(2n)n// [det(H(X))P   u 
(30) 

where H(X) is the MxM symmetric Hessian matrix of second-order 

partial derivatives of the joint CGF: 

H(X) = 32X(X) 
3X(m) aX(m) , m,m=l:M (31) 

The function pQ(z) is denoted as SPAO, meaning the zeroth-order 

SPA to the joint PDF p(z); this nomenclature distinguishes it 

from some further approximations to the joint PDF p(z) that will 

employ a first-order correction term. 

14 



It is useful to define a Gradient vector as 

XX) = [ 3X(X) 3X(1) 
3X(X) 
3X(M) 

F 

]    -• 32) 

then, SP equation (29) can be succinctly expressed as G(X) = z. 
V*. A. 

If the solution for the M-dimensional SP location X = X(z) is 

obtained by using the Newton-Raphson search procedure, then both 

the Mxl Gradient vector G(X) and the MxM Hessian matrix H(X) will 

be required during the complete search procedure.  This 

necessitates the evaluation of first- and second-order partial 

derivatives of the joint CGF, as indicated in equations (31) and 

(32). 

FIRST-ORDER CORRECTION TERM TO THE SP APPROXIMATION 

For integers j,k,l,m=l:M, define the following quantities, 

which are evaluated at the SP X = X(z), once it has been 

determined for a given field point z: 

Y  = 3X(X) 
Am " 3X(m) 

32X(X) 

X 'lm - 3X(1) 3X(m) X 
(33) 

33X(X) 
Mtlm " 3X(k) 3X(1) 3X(m) Xjklm 

34X(X) 
3X(j) 3X(k) 3X(1) 3X(m) 

The latter two quantities do not need to be evaluated during the 

search for the SP, but only need to be evaluated after the search 

has been completed.  Also, define the two symmetric MxM matrices 
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H = [Xlm] ,   T = H"1 = [Tln] . (34) 

Finally, define the three constants 

c3a = " 8 E   E  Xklm Xklm Tkl Tmk Tx  , 
kim Kim             — — 

and 

C3b "   12 E    E  Xklm Xklm Tkk 1        Tmm , (35) 
Kim Kim         —  —  — 

where the sums all run from 1 to M. 

The first-order correction to the SPAO given in equation (30) 

can now be expressed in the form (reference 6, page 180) 

Px(z) 
s Po(z) t:L + ct] ' <36> 

where the total first-order correction term is defined as 

ct = c4 + c3a + c3b ' (37) 

The joint PDF approximation p^^ (z) in equation (36) is denoted as 

SPAl, meaning the first-order SPA.  Its computation requires 

determination of the SP location, as well as third- and 

fourth-order information about the partial derivatives of the 

joint CGF X(X) at the SP X = X(z). 
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MODIFIED SADDLEPOINT APPROXIMATIONS 

Consider the following three modified SPAs: 

p1(z) ■ P0(z) [1 + cfc] = P0(z) [1 + ct + 0 ct2 + 0 ct3 + •••] , 

12 13 
Pe(z)   = P0(z)   exp(cfc)     =  PQ(z)   [1  +  cfc  +  2   cfc     + j ct    +   •••]   , 

and 

1 + Ct/2       ,     s     r, 12.13 
Pa(z) s p0(2) 1 - ct/2 - P0

(z) [1 + ct + 2 ct  + 4 Ct  + '"]   ' 

(38) 

Approximation p,( z) defined in equation (36) tacitly employs a 

zero coefficient for the second-order correction term (SOCT) c.~. 

This coefficient is most certainly incorrect because there 

definitely is a nonzero SOCT; however, this SOCT is not known. 

Furthermore, the SOCT c.- would require knowledge of the fifth- 

and sixth-order partial derivatives of the joint CGF X(M at the 

SP.  Since there are M sixth-order partial derivatives, a 

problem arises in execution time and storage when attempting to 

calculate these latter quantities. 

To circumvent the lack of knowledge and computational 

limitations, approximation p (z) in equation (38) has been 

suggested (reference 6, page 180) because it injects the SOCT 
2 

c. /2 instead of zero.  Again, this term is most certainly 

incorrect; however, it may give a better approximation to the 

true joint PDF p(z) than either of the approximations P0(z) or 

p1(z). 
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The third approximation, Pa(z)/ 
in equation (38) uses, 

instead, a rational function in c., which has the same power 

series expansion as exp(cfc) through second order.  As cfc 

increases, approximation Pa(z) becomes greater than pg(z) and 

would tend to infinity if c. approaches 2; however, by this time, 

c. could no longer be considered a correction term, but in fact, 

a dominant contributor. 

The author has conducted some numerical comparisons of the 

three approximations in equation (38) for some cases where the 

exact joint PDF p(z) can be determined.  These results indicate 

that both p (z) and p (z) generally yield worthwhile improvements e        a 
relative to p1(z), which, in turn, yields worthwhile improvements 

compared to pQ(z).  The choice between Pe(z) and Pa(z) varies 

from example to example. 
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EVALUATION OF PARTIAL DERIVATIVES OF JOINT CGF X(X) 

Evaluation of the various SPAs depends heavily upon the 

ability to obtain the partial derivatives of the joint CGF X(X) 

of RV z; see equations (30) through (33).  This joint CGF is 

repeated from equations (25), (26), (20), and (21): 

X(X) = - | log det(Q(X)) + | t(X)' Q(X) X   t(X) + u(X) ,  (39) 

where 

M 
Q(X) =1-2 D(X) =1-2 XIU x(m) c(m)    <KxK) ' <4°) 

m=l 

M 
t(X) = YZ   X(m) v(m) (Kxl) ,      (41) 

m=l 

M 
u(X) - YZ   X(m) c(m) (lxl) .      (42) 

m=l 

A POSSIBLE APPROACH TO THE PARTIAL DERIVATIVES 

From equation (25), joint CGF X(X) = log /v(X); therefore, 

(43) 3X(X)     1  3j/(X) 
3X(m)   fj(\)   3X(m) 

Also, from equation (18), 

U(\)   = E{exp[X(l) z(l) + ••• + X(M) z(M)]} . (44) 

There follows immediately 

|£i£j- = E{z(m) exp[X(l) z(l) + ••• X(M) z(M)]} .,        (45) 
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and 

2 

3\m(3X(m) = E{z(1) z(m) exPtMD -z(D + ••• X(M) z(M)]} .  (46) 

Recall from defining equation (13) and condensed version (15) 

that RV z is quadratic in Gaussian RVs; therefore, the arguments 

of the exponentials in equations (45) and (46) are quadratic in 

Gaussian RVs.  Similarly, the leading multiplying factor z(m) in 

equation (45) is quadratic in Gaussian RVs.  Therefore, the 

multiple integral representing expectation (45) can certainly be 

evaluated in closed form,  in a similar fashion, the leading 

factor z(l) z(m) in equation (46) is quartic in Gaussian RVs, 

meaning that it too can be evaluated in closed form.  The same 

conclusion holds for all the higher order partial derivatives of 

joint CGF X(X), although the integral evaluations will be 

considerably more tedious to carry out. 

The significance of this observation is that all of the 

required information for obtaining the various SPAs is 

obtainable, somehow, in closed form.  The best route for getting 

this information may not be by means of expectations (45) and 

(46), but at least it is now known that the desired information 

is obtainable.  (An example of this route to the partial deriva- 

tives of the joint CGF is given in appendix B; some interesting 

results on partial derivatives of eigenvalues are also provided.) 

However, the alternative technique described below is much more 

efficient and more readily supplies the required higher order 

joint CGF partial derivatives needed for the various SPAs. 
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FIRST-ORDER PARTIAL DERIVATIVES OF CGFl 

The joint CGF X(X) is given in equation (39).  It is composed 

of three additive parts, to be labeled X-i(X), X^CX)/ and X3(X). 

The partial derivative of the third part, X3(X) = u(X), with 

respect to X(m), is simply c(m), as seen from equation (42).  The 

higher order derivatives of X3(X) are all zero because {c(m)} are 

constants (see equation (16)). 

The immediate interest in this subsection is in the first 

part, CGFl, of the complete joint CGF X(X), namely, 

X1(X) = - | log det Q(X) , (47) 

where the symmetric KxK matrix Q(X) is given by equation (40). 

In order to streamline the following derivations, a number of 

useful matrix properties were collected in appendix C and will be 

referred to, as necessary. 

If symmetric KxK matrix D(X) is expanded in its eigen- 

decomposition, the result is 

M 
D(X) = YZ,   X(m) C(m) = V(X) E(X) V(X)' ,  V(X) V(X)' = I , (48) 

m=l 

where KxK matrix V(X) is the set of eigenvectors, and diagonal 

KxK matrix E(X) is the set of eigenvalues {e, (X)}, k=l:K.  There 

follows 

Q(X) = 1-2 D(X) = V(X) [1-2 E(X)] V(X)' , (49) 
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and 

K 
det Q(X) = det[I - 2 E(X)] = "f~T [1-2 e. (X)] (50) 

k=l        K 

because matrix V has a unity determinant.  Equation (47) yields 

XX(X) = - | log det Q(X) = - | YZ   l°9tl - 2 ek(X)'] = 

1  K   "  ->P 1  "  oP  K i  °°  ->P 
- | E E f- ek(X)P - | £] f- E ek(X)P = | YZ   f  tr{D(X)P} 

z k-1 p-1 p  K     z p=l p k-1 K l  p-l p 

- | tr|lf] §" DU)P| = | tr{- log[I - 2 D(X)]} , (51) 

where equations (C-6) and (C-12) were used.  Now, by using 

equations (C-18), (48), and (49), there follows the desired 

first-order partial derivative 

^l.ltr{Il-2D,X.r12ffiiM fxj^jj = tr{Q(X) 1  C(m)}  (52) 

for m=l:M.  The symmetric KxK matrices {C(m)} are given in 

equation (16). 

SECOND-ORDER PARTIAL DERIVATIVES OF CGFl 

For convenience of notation, let symmetric KxK matrix 

-1 M 
q(X) = Q(X)   ,  Q(X) = 1-2 D(X) = YZ   Mm) C(m) .     (53) 

m=l 

Then, by using equations (C-15), (48), and (49), there follows 
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fxuo = " q(X) txuo q(X) = 2 q(X) c(m) q(X) for m=1:M- (54) 

This enables equation (52) to be written in the compact form 

3X-.U) 
8X|m)  - tr{q(X) C(m)} = tr{B(X,m)}  for m=l:M ,        (55) 

where nonsymmetric KxK matrices {B(X,m)}, m=l:M, are introduced 

for future use.  The desired second-order partial derivative now 

follows from equations (54) and (55) as 

92X1(X) 
3X(1) 3X(m) = 2 tr^(X> C*1) <3(X> c(m>} = 2 tr{B(X,l) B(X,m)} 

for l,m=l:M . (56) 

THIRD- AND FOURTH-ORDER PARTIAL DERIVATIVES OF CGFl 

By using equations (56) and (54), it immediately follows 

that, for k,l,m=l:M, 

93X1(X) 
=8 tr{B(X,k) B(X,1) B(X,m)} = 8 tr{B. B, B)   , 3X(k) 3X(1) 3X(m) " " --i"v~/-/ ~v~,-/ "»«»«u - » *-«-i"k "1 "mJ 

(57) 

where the shortcut notation B(X,m) = B  has been introduced. 

With this notation, the final quantity of interest is 

34XX(X) 

3X(j) 3X(k) 3X(1) 3X(m) = 16 tr*Bj Bk Bl Bm + 

+ B_. BR Bm B1   + Bj B1   Bk Bm}  for j,k,l,m=l:M . (58) 
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A summary of the notation is given by 

Bm = B(X,m) = q(X) C(m) = Q(X)-1 C(m) = [I - 2 D(X)]"1 C(m)  (59) 

for m=l:M, with 

M 
D(X) = £2   x<m) c(m> • (60) 

m=l 

In writing expressions (57) and (58), advantage has been 

taken of symmetries of some expressions involved in matrices 

{Bm}; this allowed equation (57) to be condensed into a single 

trace.  However, the three traces remaining in equation (58) are 

all different in general, and no further reduction is possible in 

the number of terms that must be calculated. 

FIRST- AND SECOND-ORDER PARTIAL DERIVATIVES OF CGF2 

The interest is now centered on the second part, CGF2, of the 

complete joint CGF x(X) in equation (39), namely, 

1 M 

X2(X) = I t(X)' q(t) t(X) ,   t(X) = C X(m) v(m) .     (61) 
m=l 

The pertinent partial derivatives required are given by equation 

(54) and 

3X(m) = v(in)  for m=1:M • (62) 

Application to equation (61) yields the first-order partial 

derivative of CGF2 in the form 
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3X?(X) 
3X(m) v(m)' q t + t' Bm q t  for m=l:M , (63) 

using an obvious shorthand notation.  The corresponding second- 

order partial derivative is obtained by repeated applications of 

the above rules: 

a2x2(X) 
3X(1) 8X(m) = V(1)' q V(m) + 2 V(1)' Bm « t  + 

+  2 v(m)' B1  q t + 4 t' B1 B^ q t  for l,m=l:M . (64) 

It should be noted that the original CGF2, namely quadratic 

form X2(X) in equation (61), began and ended with Kxl vector t; 

this is called a (t-t) type of term. • On the other hand, the 

first-order partial derivative in equation (63) involved an 

additional type of quadratic form starting with Kxl vector v(m) 

and ending with vector t; this is called a (v-t) type of term. 

Finally, the second-order partial derivative in equation (64) 

involved still another type of quadratic form, beginning and 

ending with two v vectors; this is called a (v-v) type of term. 

At this point, steady state is reached; that is, no more 

additional types of terms are generated by taking additional 

higher order partial derivatives of equation (64).  However, the 

numbers of each type of term do increase, and the complexity of 

each term also increases. 
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THIRD-ORDER PARTIAL DERIVATIVES OF CGF2 

Upon taking the next partial derivative of equation (64) and 

combining like terms, the result is 

33X2(X) 

a\(k) 3X(1) 3X(m) 

2 v^ q C, q vm + 4 v£ q Cn q Cm q t + 8 t' q CR q Cj_ q Cm q t + 

k   m   1 

lkm 

k * -1    4 m -   vk  H -!  si m 

k m 1 k m 1 

1 k m 1 k m 

1 m k 

m k 1 

m 1 k (65) 

for k,l,m=l:M, where only the subscripts have been indicated 

after the first line.  There are 3! = 6 terms of type (v-t), but 

only three terms of types (v-v) and (t-t).  The reason for this 

is that the transposes of half of the (v-v) and (t-t) (scalar) 

terms can be shown to be equal to those displayed in equation 

(65); these common values have been combined and the appropriate 

scale factor adjusted.  All the quadratic forms remaining in 

equation (65) are different in general; no further reduction in 

the number or types of terms is possible. 
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FOURTH-ORDER PARTIAL DERIVATIVES OF CGF2 

The fourth-order partial derivative of CGF2, namely X2(M, 

also contains only the (v-v), (v-t), and (t-t) terms.  In 

particular, for j,k,1,m=l:M, the (v-v) terms are 

4 vj q Ck q CL q vm (66) 

and 12 permutations of its subscripts.  The (v-t) terms are 

8 v^ q Ck q Cx q Cm q t (67) 

and 24 permutations of its subscripts.  The (t-t) terms are 

8 t' q Cj q Ck q Cx q Cm q t (68) 

and 12 permutations of its subscripts. 

There are 4! = 24 terms of type (v-t), but only 12 terms of 

types (v-v) and (t-t).  The reason is identical to that cited 

under equation (65), namely, the equality of some transposes of 

scalar quantities involving (v-v) or (t-t) terms.  The twelve 

quadratic forms remaining in equations (66) through (68) are 

different in general; no further reduction in the number or types 

of terms is possible. 

It should be noted in equations (66) through (68) that a 

large number of matrix multiplications are involved, especially 

in equation (68), where 11 terms are involved.  However, by 
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starting at one end of equation (68), for example, all the 

successive multiplications involve a vector with a matrix, which 

is considerably faster than for full KxK matrices. 

Alternatively, the {B } matrices in equation (59) can be computed 

once and stored for repeated use in the operations above.  The 

danger with this latter approach is the possibility of very large 

storage requirements, especially for large M and/or K. 

The totality of partial derivatives required to compute the 

first-order correction term c. to the SPA in equations (33) 

through (38) is given in equations (55) through (58) and 

equations (63) through (68).  These results have been combined in 

a MATLAB program listed in appendix D and entitled quadlinspa, 

denoting the SPA for the M general quadratic and linear forms of 

equation (13).  In the special case of purely quadratic forms 

(see bottom of page 8), an alternative MATLAB program, listed in 

appendix E and entitled quadspa, has been written.  Both programs 

compute the three SPAs in equation (38) as well as the standard 

SPAO in equation (30). 
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SUMMARY 

The saddlepoint approximation to the joint M-dimensional 

probability density function for M arbitrary quadratic and linear 

forms in K Gaussian random variables with arbitrary means and 

covariance matrix has been derived.  Also, the first-order 

correction term to the standard saddlepoint approximation in M 

dimensions has been determined and used to form several different 

possible approximations to the desired joint probability density 

function. 

The determination of the M-dimensional saddlepoint location, 

and the standard saddlepoint approximation itself, require 

evaluation of first- and second-order partial derivatives of the 

joint cumulant generating function at arbitrary points in 

M-dimensional space; these quantities have been derived in closed 

form.  Also, the third- and fourth-order partial derivatives of 

the joint cumulant generating function have been derived for use 

in calculating the first-order correction term to the saddlepoint 
i 

approximation in M dimensions.  All these results have been 

combined in two MATLAB programs; namely, quadlinspa, which 

handles the quadratic and linear case, and quadspa, which handles 

the purely quadratic case. 

Sometimes, interest is centered on the square roots of the 

quadratic and linear random variables {z(m)} when all of these 

quantities are nonnegative.  For example, in some signal 
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processing applications, the square roots represent envelope or 

amplitude quantities of interest, while the {z(m)} are power 

quantities.  Letting u(m) = z(mp  for m=l:M, the joint 

probability density function p- of the random variables (u(m)} at 

M-dimensional field point u = [u.,,...,u ]' is given by 

p2(ul'*"'V = P(U1'**''UM) 2" ul •" UM (69) 

for u  > 0 for m=l:M. Thus, if joint probability density function 

P2 is to be determined at arguments u.,...,u„, the joint 

probability density function p of random vector z must be 

2     2 evaluated at arguments u.,...,u„; this serves as the field point 

2     2 z, namely, z = [u1,...,u„]', for the procedures detailed above in 

this report.  More generally, this procedure can be extended to 

nonlinear transformations  u(m) = f (z)  for m=l:M, provided that 

the right-hand sides {f (z)} do not generate imaginary numbers 

for some values of random vector z. 
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APPENDIX A - A PROPERTY OF QUADRATIC FORMS 

Let y be a Kxl vector and let C be a KxK matrix, not 

necessarily symmetric.  The symmetric and anti(skew)-symmetric 

matrices of C are defined as 

Cs = hC  + C,) '   Ca = l(C " C,) ' (A_1) 

It immediately follows that C = C  + C  and C' = -C . 

Now, consider the quadratic form 

f = v' C v = v' (C  +C)v=v'C v  for any v .      (A-2) 
S3 S 

The term involving C  is zero, as can be seen by taking its 

transpose and using the property C' = -C ; thus, only the 

symmetric part of matrix C is active in quadratic form f. 

Therefore, when a quadratic form such as v' C v is encountered, 

the matrix C may be presumed symmetric without loss of 

generality. 

A-l/(A-2 blank) 



APPENDIX B - DIRECT EVALUATION OF EXPECTATIONS 

FIRST-ORDER PARTIAL DERIVATIVES OF CGF 

The first-order (FO) partial derivative (PD) of joint MGF 

fj(\)   is given by the expectation in equation (45).  Also, RV z(m) 

is given in equations (14) and (15) as 

z(m) = g' C(m) g for ra=l:M , (B-l) 

where consideration is limited here to the purely quadratic case; 

see bottom of page 8.  Combining these results leads to FO PD 

lx[m]   =  E{9' C(m) 9 exPt9' D(M g])  for m-l:H ,       (B-2) 

where symmetric matrix D(X) is given in equation (19) as 

M 
D(X) = YZ   Mm) c(m) . (B-3) 

m=l 

Perform the same eigen-decomposition on matrix D(X) as in 

equation (48); namely, D(X) = V(X) E(X) V(X)' = V E(X) V, and 

define the linearly transformed Kxl zero-mean Gaussian RV 

y = V g with E{y} = 0 ,  E{y y'} = E{V g g' V} = I . (B-4) 

Then, using g = V y, the FO PD in equation (B-2) becomes 

l^iAI = E{yr v, c(m) v y exp(y' V D(X) V y} = 

= E{y' F(X,m) y exp(y' E(X) y)}  for m=l:M ,      (B-5) 

where E(X) = diag{ek(X)}, and symmetric KxK matrix 
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F(X,m) s v' C(m) V = V(X)' C(m) V(X)  for m=l:M . (B-6) 

Define the elements of this KxK F matrix as 

F(X,m) - [f(X,m;k,k)]  for k,k=l:K ;  m=l:M , (B-7) 

and let the components of RV y in equation (B-4) be denoted as 

y = [yd) ••• y(K)]' . (B-8) 

Then, the FO PD in equation (B-5) becomes, for m=l:M, 

|ff£[ = E{ YZ   f(X,m;k,k) y(k) y(k) exp 3X(m)   IkTkil 

r K 

d e
D<x> y(p)' 

IP=I   p 

K 
r~! f(X,m;k,k) E^y(k) y(k) exp 
k,k=l I 

K 
IZ en<x> y(p>" 
ip-i 

(B-9) 

If k fi  k, the expectation in equation (B-9) is zero.  Therefore, 

3//(X) ftst-JS f(x'm'k'k) E(y(k)  exp iz ejv Y(P) 
Lp-l    p 

(B-10) 

The k-th average in equation (B-10) is, with the help of the 

statistics of Gaussian RV y in equation (B-4), 

K 
(1 - 2 e.) 3/2 Tl  (1 

K     P-l 
p^k 

2 V -h  _ (1 - 2 ek) 
-1 

P-l 
(1-2 e ) -H 

= (1 - 2 ek) 
X  fj(\)     for k=l:K . (B-ll) 

This last result for joint MGF /J{\)   follows from equations (23) 

and (50) in the purely quadratic case.  The use of equation 
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(B-ll) in equation (B-10) yields 

_K_ 

k~l 
|^j- = //(X) XZ! f(X,m;k,k) [1 - 2 et(X)] X     for m-l:M . (B-12; 

But, since X(X) = log /t/(X), there immediately follows 

m  - S I'-Te^)  'or^l,-. ,»-13, 

The elements {f(X,m,k,k)} of matrix F(X,m) are given in equations 

(B-6) and (B-7).  If the KxK eigenvector matrix V(X) in equations 

(B-4) through (B-6) is expressed in terms of its Kxl column 

vectors {Vk(X)}f k=l:K, according to V(X) = [V-^X) • •• VR(X)], 

then equations (B-6) and (B-7) yield 

f(X,m,k,k) = Vk(X)' C(m) Vk(X)  for m=l:M , k=l:K ,    (B-14) 

which avoids the calculation of the entire KxK F(X,m) matrix for 

each m. 

The result in equation (B-13) can be manipulated into a 
I' 

familiar form: 

|£[£j- = tr{[I - 2 E(X)]"1 F(X,m)} = tr{[I - 2 E(X)]"1 V C(m) V} 

= tr{V [1-2 E(X)]-1 V C(m)} = tr{Q(X)-1 C(m)} ,   (B-15) 

where equations (B-6), (B-7), and (49) were used.  This latter 

result in equation (B-15) agrees with equation (52) because the 

second part of the joint CGF, X2(X), is zero in this purely 

quadratic case. 
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SECOND-ORDER PARTIAL DERIVATIVES OF CGF 

This presentation will be somewhat abbreviated, since the 

details are similar to those above.  Using shorthand notation 

dfj{\) 3X(X)  "m(X) 

"mK/<}   ~ 9X(m) '  xmlA; " 3X(m)   p{\) (B-16) 

There follows, for the second-order PDs of the joint CGF, 

mm 

WX> =UTXT-  Xm(X) Xm(X) (B-17) 

From equation (46), the pertinent quantity is 

^mm(
x) = E<z(m) z(m) exp mm — 

r M 
TZ   Mp) z(p) 
lp=l 

- E S f(m;k,k) f(m;l,l) EJy. y. y, y, exp 
kkll      ~   ~      ~       { k     *     L    ± 

(   K 
5   e y 
—i  P P 

(B-18) 

Only two cases yield nonzero averages in equation (B-18).  In 

the first case, k = k = 1 = 1, the statistical average becomes 

r  K 
E{y, exp C en y 

Lp-l P *P 
= B(yj| exp[ek yj])- J~\  E (exp [e  y*] ) = 

p=l        c     * P= 
P^k 

K 

[1 - 2 e,]5/2 p-1 
p^k 

[1 - 2 ek] 
3 y{\) 

[1-2 ek]' 
for k=l:K. (B-19) 

For convergence of these integrals, it is necessary that all the 

eigenvalues e, -  e. (X) < h   for k=l:K.  This case contributes the 
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following  term to /t/     (X): 3 mm 

K     f(m;k,k)   f(m;k,k) 
3  /y(X)  ^Z]    5     for  m,m=l:M 

k-1 [1-2   ekr 
(B-20) 

The second case consists of three subcases: 

k = k jt  1 = 1 , 

k = 1 ft  k = 1 , 

k = l/k = l . (B-21) 

The pertinent average for the first subcase is 

2  2 
Elyk Yl exp 

K 
r 1 i, 
) . e Y —i  P P lp=l v *. 

fj{X) 
[1-2 ekJ[l - 2 e^ 

(B-22) 

This first subcase contributes the term 

K   f(m;k,k) f(m;l,l) 

^(X) S [1 - 2 ek][l - 2 ei] 
(B-23) 

- //(X) ^ fJmjMO^ 
f-i 1 - 2 e. Lk=l       kj 

' K  f(m;k,k)> 

Lk-1 x     kj 

K  f(m;k,k) f(m;k,k)' 
C  —2  
k-1   [1 - 2 ekr 

The other two subcases each contribute the following term to 

mm 

K  f(m;k,k) f(m;k,k) 

"(M 5 [1 " 2 «k"1 ~   2  ek> = (B-24) 

C K    f(m;k,k) f(m;k,k)      K  f(m;k,k) f(m;k,k) 
= "(X> (Si [1 -2 .kl[l- 2 V " S    [1 - 2 ek]

2 
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When all the terms are combined according to equation (B-17), 

a number of cancellations occur, yielding, for m,m=l:M, 

K     f(X,m;k,k) f(X,m;k,k) 
XmmU) = 2 kC=i [1 - 2 ek(X)][l - 2 eJL(X)] ' (B"25) 

where the X dependence has been reintroduced, and equation (B-13) 

was used. 

Equation (B-25) may be manipulated as follows: 

Xmm(X) - 2 tr{(I - 2 E)"1 F(X,m) (1-2 E)"1 F(X,m)} = 

= 2 tr{(I- 2 E)"1 V C(m) V (I - 2 E)_1 V C(m) V} ,   (B-26) 

upon use of equations (B-6) and (B-7).  Then, upon movement of 

the trailing matrix V to the front of the trace, there follows 

X  (X) = 2 tr{Q(X)-1 C(m) Q(X)_1 C(m)}  for m,m=l:M ,  (B-27) 
mm — — 

where equation (49) was used.  This result is identical to 

equation (56) in this purely quadratic case. 

RELATED EIGENVALUE PROPERTIES 

Suppose matrix D is KxK and symmetric.  Its eigen- 

decomposition is  D = V E V  or  D vk = ek Vk for k=1:K-  Then, 

V£ D = ek V£  and V£ V1  = «kl.  Equivalently,  ek = Vj^ D VR. 

Now, suppose that matrix D is a function of scalar x.  Then, 
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dfek - dfvk D vk + vk dfD vk + vk D dfvk 

- ek(dfvk vk+ vk dfvk)+ vk dfD vk - 

- ek d£(vk vk) + vk dfD vk • <B-28> 

But, since V7 V, = 1 for all x, it follows that 

gfek(x) = Vk(x)' g|D(x) Vk(x)   for k-l:K . (B-29) 

Relation (B-29) is true for any matrix D(x).  Now, let 

X = [X(l) ••• X(M)]' and 

M 
D = D(X) = YIZ   Mm) c(m) ,   KxK C(m) constant ,      (B-30) 

m=l 

and interpret x as X(m).  Then, D(X) V. (X) = e, (X) V.(X) and 

3ek(X) 3DfX) 
1x7*7" - VX)' Wat Vk(X) - VX>' c<m>  VX>      <B~31> 

for k=l:K, m=l:M.  This is a useful relation for the PD of an 

eigenvalue.  The quantity on the right-hand side of equation 

(B-31) is identical to the quantity in equation (B-14). 

Upon multiplication of equation (B-31) by X(m), summation 

over m, and use of equation (B-30), there follows 

M      3e.(X) 
r~! X(m) 3X^m)  = Vk(X)' D(X) Vk(X) = ek(X)  for k=l:K . (B-32) 
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This result gives an expansion of an eigenvalue in terms of its 

PDs weighted by the {X(m)}. 

A second PD on equation (B-31) yields 

32ek(X)     3V.(X)' av.(X) 

3X(m) 3X(n) = "sIUT CU) Vk(X) + VX)' C(m) SXTnT" ' (B"33) 

Multiplication by X(m) and summation over m now leads to 

M 32e,(X) 3V,(X)' 3V,(X) 
j£   Mm)   aX(m)   3X(n)   =  -^^ D(X)   Vk(X)   +  Vk(X)'   D(X)   j^y- 

3Vk(X)' 3Vk(X) 
V. (X)   e, (X)   +  e. (X)   V. (X) .   3X(n)      vkv~'   ckv/v/   T  ckv/v'   vkv/w      3X(n)     ~ 

=  ek(X)   3X(n) [Vk(X)f   Vk(X)]   =   °     for   k=1:K   '   n=l:M   .   (B-34) 

Thus, the sum of second-order PDs of the eigenvalues, weighted by 

the {X(m)}, is always identically zero.  Relations (B-31), 

(B-32), and (B-34) have been checked numerically. 
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APPENDIX C - MATRIX PROPERTIES 

TRACE PROPERTY 

Let A be a KxK matrix, not necessarily symmetric.  The trace 

of matrix A, in terms of its elements {A(k,l)}, is 

K 
tr(A) = YH   A(k,k) . (C-l) 

k=l 

Then, the trace of a product of two KxK matrices follows as 

K 
tr(A B) = YH   A(k,l) B(l,k) = tr(B A) . (C-2) 

k,l=l 

It immediately follows that the trace of a product of several 

KxK matrices, such as C D E F G, can be rearranged, for example, 

as 

tr(C D E F G) = tr(E F G C D) , (C-3) 

simply by identifying A as C D and identifying B as E F G.  In 

fact, any cyclic rearrangement of the matrices is allowed without 

changing the value of the trace.  However, if the cyclic pattern 

is changed (for example, by switching the locations of matrices F 

and G), the trace is modified. 
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EIGENVALUE PROPERTY 

Let matrix A be KxK and have eigen-decomposition 

A = V E V-1 ,  E = diag{ek} , k=l:K . (C-4) 

Then, A2 = A A = V E V-1 V E V-1 = V E2 V-1, which can be 

immediately generalized to 

Ap = V Ep V-1 for integer p . (C-5) 

There follows 

tr(AP) = tr(V EP V"1) - tr(EP V-1 V) = tr(EP) = T~I e? • (C-6) 
k-1 K 

Thus, the trace of the p-th power of A is equal to the sum of the 

p-th powers of all the eigenvalues of matrix A. 

USEFUL MATRIX PROPERTIES 

Let A be a KxK matrix as in equation (C-4).  For scalar a, 

the identity 

(1 - a)-1 = ±  * a = l + a + a2 + a3 + •••  if |a| < 1 . (C-7) 

By using equation (C-4) and  I-A=V(I-E) V  , this 

generalizes to the matrix relation 

(I - A)-1 = V (I - E)_1 V-1 = V diag{(l - ek)
-1} V-1 = 

- V diag{l + ek + e2 + •••} V-1 =V(I+E+E2+---} V-1 = 

2    3 
= I + A + A  + A + •••  if |ek| < 1 for k=l:K .        (C-8) 
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That is, 

00 

YZ,   An = (I - A)"1  if |eig(A)| < 1 , (C-9) 
n=0 

where eig(A) denotes all the eigenvalues of matrix A. 

A function f(A) of matrix A is defined according to 

f(A) =  V f(E) V-1  where   A = V E V-1 . (C-10) 

2      3 Therefore, the relation -log(l - a) = a + a /2 + a /3 + ••• for 

scalar a generalizes to 

-log(I - A) = -V log(I - E) V-1 = -V diag{log(l - eR)} V
-  = 

. -v aia9(-ek - ft - ft - ...jv"
1 - -v(-E - ft -  K -  -K1 

= A +  |A2
  +  |A3

   +   •••        if   |ek|   <   1   for  k=l:K   . (C-ll) 

That  is, 

OS 

l.n []   ¥ = -  log(I  - A)     if   |eig(A)|   <  1   . (C-12) 
n=l 

Now, let A(x) be a KxK matrix which is a function of x. 

Represent the derivative with respect to x by the symbol A(x). 

Then, by use of the chain rule, the derivative of the p-th power 

of A(x) contains p terms: 

_d 
dx 

A(X)P = dx(A(x) "" A(x)) = A AP -1 + A A AP 2 + ••• + AP ■"■ A . 

(C-13) 
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Then, by using the trace properties in equations (C-2) and (C-3), 

there follows 

tr(^A(x)P] = p tr(A(x)p-1 A(x)) . (C-14) 

If matrix B(x) is the inverse of matrix A(x), the derivative 

of matrix B(x) may be found as follows: 

B(x) = A(x)"1 ,  B(x) A(x) = I ,  B(x) A(x) + B(x) A(x) - 0 , 

B(x) - - B(x) A(x) A(x)"1 = - B(x) A(x) B(x) . (C-15) 

That is, the derivative of the inverse of a matrix A(x) is given 

by the negative derivative of the matrix A(x), which is then pre- 

and post-multiplied by the inverse matrix B(x). 

The final needed matrix property involves the derivative of 

equation (C-ll).  There follows 

_d 
dx F-log(I -A)] = Ä + j(k  A + A A] + J(A A2+AÄA + A  Al + • • • 

(C-16) 

from which is obtained, by using equation (C-8), 

tr(dx[~log(I   " A)l)   =  tr(A + A Ä + A2 A +   •••]   =  tr[(I   - A)-1  ÄJ . 
(C-17) 

Finally, interchanging the trace and derivative, 

_d 
dx [tr[-log[I - A(x)]]] = tr[[I - A(x)] 1  A(x)] .       (C-18) 

This holds for all A(x), except if one or more eig(A(x)) = 1. 
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APPENDIX D - MATLAB PROGRAM quadlinspa 

clear all 
M=4; 
K=64; 
tol=le-7; 
W<max=100; 
f=.499; 

% SPA to joint PDF of M quadratic and linear forms. 
% Number of quadratic and linear forms. 
% Number of Gaussian random variables. 
% Tolerance in saddlepoint search. 
% Maximum number of search trials. 
% Proximity to boundary at .5 

randn ('state',0) 
A=randn(K,K); 
R=A*A' ; 
r=randn(K,l); 
P=zeros(K,K,M); 
for m=l:M 
A=randn(K,K); 
P(:/:,m) = (A+A')* 
end 
p=randh(K,M); 

q=randn(M,l); 

% INPUT INFORMATION 
% Positive-definite covariance 
% matrix, R, of K.Gaussian RVs. 
% Mean vector, r, of K Gaussian RVs. 

.5; % Symmetric quadratic terms, P 

% Linear terms, p 
% Constant terms, q 

z=zeros(M, 1); 
S=chol(R); 
g=randn(K,l); 
w=r+S' *g; 
for m=l:M 
z(m) = (P(:, :,m)*wt-p(:,m)) '*wtq(m) ; 
eü % Mxl/  field point z 

% SPECIFY FIELD POINT z 
% KxK 
% Kxl, N(0,1) 
% Kxl, N(r,R) 

C=zeros(K,K,M); 
v=zeros(K,M); 
c=zeros (M, 1) ; 
S=chol(R); 
for m=l:M 
A=P(:, :,m); 
C(:,:,m)=S*A*S'; 
a=A*r; 
v(:,m)=S*a; 
c(m)=r'*a; 
end 
v=S*p+2*v; 
c=q+p'*r+c; 

% PRE-CX3MFJTATI0N OF MATRICES 

KxK 

% KxK 

% KxK 

% Kxl 

% Kxl 

% 1x1 

KXM 

tic 
L=zeros (M, 1) ; 

% SEARCH FOR SADDLEPOTNT 
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B=zeros(K,K,M); 
G=zeros (M, 1) ; 
H=zeros(M,M); 
vfc=v'; ■ % MxK 

kk=0; 
K2=K*K; 
znorm=sqrt (z' *z) ; 
err=z-G; % MdL 
vvhile (sqrt (err' *err) /znorm) >tol 

t=v*L; % Kxl 
P=3:eshape(C,K2,M); 
DL^reshape (P*L, K, K); % KxK 
e=eig(DL); % Kxl 
ecrraiax(e) ; 
if en>=.5 

I>L*(f/em); %Mxl 
DLP=DL* (f/an); % KxK 
eigmax=[an kk] 

end 
Q=eye(K)-2*DL; % KxK 
qt=Q\t; % Kxl 
for npl:M 

Bl=C(:,:,m); % KxK 
A=Q\B1; % KxK 
B(:,:,m)=A; 
G (m) =trace (A) 4qt' *Bl*qt ; 

end 
G=G+vt*qt+c; % Mxl Gradient vector 
for ml=l:M 

Bl=B(:,:,rrl); % KxK 
tb=2*t' *Bl+v(: ,ml) '; % 13<K 
for rri2=ml:M 

B2=B(:,:,ir2); % KxK 
ts=Bl(:)'*reshape(B2',K2,1)... 
+ (tb*B2+v(: ,m2) ' *B1) *qt; 
H(ml,ifi2)=ts; 
H(irß,ml)=ts; 

end 
end 
H=H*2+vt/Q*v; % MxM Hessian itatrix 
err=z-G; % IM&cl 
dL=H\err; % M 
fr=.3; % fraction:   [0 1) 
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ff=1-0^ (kk+1) ; 
D=L+<3L*f f; % McL 
kk=kk+l; 
if kk>kkmax, break, end 

end % while 
disp(['kk = 'int2str(kk)]) 

L=L+dL*(l-ff);  % saddlepoint  % Mel 
u=c'*L; % 1x1 
t=v*L; % Kxl 
P=reshape(C,K2,M); 
Dl^reshape (P*L, K, K); % KxK 
e=eig(DL); 
if (max(e)>f) 

disp(['eigmax is greater than f = 'nurti2str(f) 
keyboard 

end 
Q=eye (K) -2*DL; % KxK 
qt=Q\t; % Kxl 
br=.5*(t'*qt)+u; % 1x1 
rngf0=l/sort(prod(l-2*e)) ; 
mgf=mgf 0*exp (br) ; 
cgf=log (mgf 0) +br ; 

for m=l:M 
Bl=C(:,:,m); % KxK 
A=Q\B1; % KxK 
B(:,:,m)=A; 
G (m) =trace (A) +qt' *Bl*qt ; 

end , 
G=G+vt*qt+c;      % Mxl Gradient vector. 
err=z-G; % Error in gradient of CGF. 
reg=sqrt(err'*err)/znorm; 
disp ([' rel_err_grad = ' num2str (reg) ]) 
tl=toc; 
disp(['tl(sec) = 'num2str(tl)]) 

tic 
BB=zeros (K,K,M,M) ; 
for ml=l:M 

Bl=B(:,:,ml); % KxK 
tb=2*t' *Bl+v(: ,ml) ';       % IxK 
for m2=l:M 
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B2=B(:,:,m2);                         % RxK 
A=B1*B2;                                    % KxK 
BB(:,:,ml,m2)=A; 
if (ml<=nß) 

ts=trace(A)...            % 1x1 . 
+ (tb*B2+v (: ,lti2) ' *B1) *qt; 
H(ml,m2)=ts; 
H(m2,ml)=ts; 

aid 
end 

end 
qy=Q\v; % KJM ■ 
H=H*2+vt*qv; % MxM Hessian matrix - 

den=sqrt ((2*pi) ~M*det (H)) ,- 
pdf0=ngf *exp (-z' *L) /den; % SPAO 

T=zeros(M,M,M); 
for ml=l:M 
for m2=ml:M 
A=reshape (BB (:',:, ml, m2)', 1, K2) ; 
for m3=m2 :M 
T(ml,rr2,irö)=A*reshape(B(:, : ,m3) ,K2,1),- 
end, end, end 
for ml=l:M 
for m2=l:M 
for m3=l:M 
s=sort ([ml m2 m3 ]) ; 
T(ml,m2,m3)=T(s(l) ,s(2),s(3)) ; 
end, end, end 
T>T*8;     % MxMxM; Third-Order Partial Derivatives 

Tl=zeros(M,M,M) 
T2=zeros(M,M,M) 
T3=zeros (M,M,M) 
for m=l:M 
A2=qy'*C(:,:,m)*qy; % MM 
Tl(m, :, :)=A2; 
T2(:,m, :)=A2; 
13(:,:,m)=A2; 
end 
Ta=(Tl+T2+T3)*2; % MMxM; TO PDs 
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for ml=l:M 

for m2=l:M 
Al=vt*((BB(:, :,ml,m2)+BB( 

Tl(:/ml/Itl2)=Al; 

T2(m2,:,ml)=Al; 

T3(ml,m2,:)=Al; 

end, end 

Tb=(Tl+T2+T3)*4; 

,m2,ml))*qt); 

% Vb&m-,  TO PDs 

for ml=l:M 
for m2=l:M 

Bl=t'*BB(:,:,ml,it2); 
for m3=l:M 

a=Bl*B(:,:,m3)*qt; 
Tl(ml,m2,m3)=a; 
T2(m3,ml,m2)=a; 

T3(m2,m3,ml)=a; 
end, end, end 
Tc=(Tl+T2+T3)*8; 

% IxK 

% 1x1 

% MMM; TO PDs 

T^+lä+lb+Tt; % MxMxM; Third-Order Partial Derivatives 

F=zer0S (M,M,M,M) ; 

for ml=l:M 
for m2=ml:M 

A=reshape (BB (:, :,ml,m2) ' ,1,K2); 
for m3=m2:M 

Bl=reshape (BB (:, :,ml,m3) ',1,K2); 
for m4=m3 :M 

F(ml,ni2,rr3,m4)=A*reshape(BB(:, :,m3,m4)... 
+BB(:,:,m4,m3),K2,l)... 
+Bl*reshape(BB(:,: ,m2,m4) ,K2,1) ,- 
end, end, end, end 
for ml=l:M 
for m2=l:M 

for m3=l:M 
for m4=l:M 

s=sort ([ml m2 m3 m4]) ; 

F(ml,m2,m3,m4)=F(s(l),s(2),s(3),s(4)); 
end, end, end, end 

F=F*16; % WüM&M.;  Fourth-Order Partial Derivatives 

Tl=zeros (M,M,M,M) ; 

D-5 



T2=T1;  03=01;  T4=01;  T5=T1;  T6=01;  07=01; 
T8=01;  T9=01;  010=01;  011=01;  012=01; 

for ml=l:M 
for m2=l:M 
A2=vt* (BB (:, : ,ml,lTi2)+BB (:,: ,rr2 ,ml)) *gy; 
TKml,m2, :7 :)=A2; 
02(ml, :,m2,:)=A2; 
03(ml, :,:,m2)=A2j 
T4(:,ml,m2,:)=A2; 
05(:,ml,:,m2)=A2; 
T6(:,:,ml,m2)=A2, 
end, end 
1a= (01+02+03+T4+T5+T6) *4; 

ttfcM 

% MMM; P0 HDs 

for ml=l:M 
for m2=l:M 
Bl=vt*(BB(:,:,ml,rn2)+BB(:,:,m2,ml));  % MxK 
for m3=l:M 
Al=Bl*(B(:,:,irß)*qt); 
01(:,ml,m2,m3)=Al; 
02(m3,:,ml,m2)=Al; 
03(m2,m3/:/ml)=Al; 
T4(ml,m2,m3/:)=A1; 
05(:,ml,m3,m2)=Al; 
T6(m2,:,ml,m3)=Al; 
T7(m3,m2,:,ml)=Al; 
T8(itLL,m3,m2,:)=Al; 
09(m3,m2,ml, :)=A1; 
O10(m2,ml,:,in3)=Al; 
011(ml,:,m3/m2)=Al; 
T12(:,m3,m2,ml)=Äl; 
end, end,  end 
Ob=(01+02+03+T4+05+T6+.. 
074T8+T9+010+011+T12) *8; 

m± 

MxMxtMYT;  K> EDs 

for ml=l:M 
for m2=l:M 
Bl=t,*(BB(:,:,ml,m2)+BB(:,:,m2,ml));  % IxK 
for m3=l:M 
for m4=l:M 
a=Bl*BB (:,: ,m3 ,m4) *qt; % IxL 
01(ml,m2,m3,m4)=a; 
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T2(m4,ml,m2,m3)=a; 
T3(m3,m4,ml,m2)=a; 
T4(m2,iti3,m4,ml)=a; 
15 (ml, m2, m4, m3) =a; 
T6(m3,ml,iti2/m4)=a.; 
T7(m4,m3,ml,m2)=a; 
T8(m2,m4,m3,ml)=a; 
T9(ml,m3,m2,m4)=a; 

T10 (m4 ,ml ,m3 ,m2) =a; 
TH(m2,m4,ml,iti3)=a; 

T12(m3,m2,m4,ml)=a; 
end, end, end, end 
TC=(T1+T2+T3+T4+T5+T6+... 
T7+T8+T9+T10+T11+T12)*8; % MxMxMxM; FO EDs 

F=F+Ta+TbfTc;  % MJM«I; Fourth-Order Eartial Derivatives 

% CALCULATE CORKBCTTCN TEEMS 
A2=zeros (M,M) ,- 
M2=M*M; 
Hi=mv(H); % MM 

Hr=Hi(:)\- % 1^2 
for ml=l:M 
for m2=l:M 

A2 (ml, m2) =Hr*reshar« (F (:,:, ml, rrß), M2,1) ; 
end, end 
c4=Hr*A2(:)/8; 

Al=zeros(M,l); 
for m=l:M 
Al (m) =Hr*reshape (T (:,: ,m) ,M2,1) ■ 
end 
c3a=-Al'*Hi*Al/8; 

A3=zeros(M,M,M); 
for ml=l:M 
B2=Hi(:,ml)'; % mi 
for m2=l:M 
B3=Hi(:,m2); % j^X 
for m3=l:M 

A3(ml,m2,m3)=B2*T(:,:,m3)*B3; 
end, end, end 
B2=zeros(M,M); 
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for ml=l:M 
B3=reshape(T(:,: ,ml) ,1,M2) ; 
for m2=l:M 
B2 (ml,iri2) =B3*resh^e(A3 (:,: ,m2) ,M2,1) ; 

end, end 
c3b=-Hr*B2(:)/12; 

ct=c4+c3a-K;3b;     % FIRST-ORDER CORRECTION TERM 

disp('c4 c3a c3b ct =') 
disp([c4 c3a c3b ct]) 
pdfl=pdfO*(l+ct); 
pdfe=pdfO*exp(ct) ; 
pdfb^pdf 0*(l+ct/2)/(l-ct/2); 
t2=toc; 
disp(['t2(sec) = 'num2str(t2)]) 
disp(['pdf0 = 'num2str(pdf0)]) 
dispü'pdfl = 'num2str(pdfl)]) 
disp(['pdfe=  'nurr2str(pdfe)]) 
disp(['pdfb=  'nurti2str(pdfb)]) 

D-8 



APPENDIX E - MATLAB PROGRAM quadspa 

clear all 

M=4; 
K=7; 
tol=le-7; 

kkrax=100; 

f=.499; 

% SPA to joint PDF of M quadratic forms. 

% Number of quadratic forms. 

% Number of Gaussian random variables. 

% Tolerance in saddlepoint search. 

% Maximum number of search trials. 

% Proximity to boundary at .5 

ranch ('state', 0) 
A=randn(K,K); 
R=A*A' ; 
P=zeros(K,K,M) ; 
for m=l:M 
A=randn(K,K); 
P(:,:,m) = (A+A')*.5; 
end 

% INPUT INFORMATION R AND P 
% Positive-definite covariance 
% matrix, R, of K Gaussian RVs. 

% Syrrmetric quadratic terms, P 

z=zeros(M, 1); 
S=chol(R) ; 
g=randn(K, 1) ; 
w=S'*g; 
for m=l:M 
z(m)=W'*P(:, :,m)*W; 
errl 

% SPHTIFY FTFID POINT z 
% KxK 
% Kxl,  N(0,1) 
% Kxl, N(0,R) 

Mxl,  field point z 

C=zeros(K,K,M) ; 
S=chol (R) ; 
for m=l:M 
C(:,:,m)=S*P(:,:,m)*S'; 
end 

% PP£-{XMUTATTCN OF MATRIX C 
% KxK 

% KxK 

tic % SEARCH FOR SADDLEPOINT 
L=zeros(M, 1) ; 

B=zeros(K,K,M); 
G=zeros(M,l); 
H=zeros (M,M) ; 

K2=K*K; 

znorm=sqrt(z'*z); 
err=z-G; % Mxl 
while(sqrt(err'*err)/znorm)>tol 

P=reshape (C, K2,M) ; 

. DL=reshape(P*L,K,K);      % KxK 
e=eig (DL) ; Kxl 
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erwnax(e) ; 
if em>=.5 

Ip=L*(f/enO; % M& 
DL=DL* (f/en); % KxK 
eigmax= [en kk] 

erl 
Q=eye(K)-2*DL; % KxK 
for m=l:M 

A=Q\C(:,:,m); % KxK 
B(:,:,m)=A; 
G(m)=trace(A);    % Mxl Gradient vector 

end 
for ml=l:M 

A=reshape(B(:, :,ml) \1,K2); 
for m2=ml:M 

ts=A*reshape(B(:,: ,m2) ,K2,1) ; 
H(ml,m2)=ts; 
H(m2,ml)=ts; 

erl 
erl 
H=H*2; % ]yb<M Hessian matrix 
err=z-G; % IYKI 

dD=H\err; % ly&cl 
fr=.6; % fraction:   [0 1) 
ff=l-fr" (kk+1); 
L=L+dL*ff; % McL 
kk=kk+l; 
if kk>kkrrax, break,  end 

end % while 
disp(['kk = 'int2str(kk)]) 

Lrf^dL* (1-f f);    % saddlepoint      % McL 
P=reshape (C, K2 ,M) ; 
DL=reshape (P*L, K, K); % KxK 
e=eig(DL); 
if(max(e)>f) 

disp(['eigmax is greater than f = 'num2str(f) ]) 
keyboard 

erl 
Q=eye(K)-2*DL; % KxK 
ngf=l/sgrt (prod (l-2*e)) ; 
cgf=log(mgf); 
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for m=l:M 

A=Q\C(:,:,m); % KxK 
B(:,:,m)=A; 
G(m)=trace(A); % Mxl Gradient vector 

end 

err=z-G; % Error in gradient of cgf 
reg=sqrt (err' *err) /znorm; 
disp ([' rel_err_grad = ' num2str (reg) ]) 
tl=toc; 

■disp(['tl(sec) = 'num2str(tl)]) 

tic 
BB=zeros(K,K,M,M); ' 
for ml=l:M 

Bl=B(:,:,ml); % KxK 
for m2=l:M 

A=Bl*B(:,:,m2); % KxK 
BB(:,:,ml,m2)=A; 
if (ml<=m2) 

ts=trace(A); % ixl 
H(ml,m2)=tS; 
H(m2,ml)=ts; 

end 
end 

end 

H=H*2; % MxM Hessian matrix 

den=sgrt ((2*pi) "M*det (H)) ,- 
pdf 0=mgf *exp (-z' *L) /den; SPAO 

T=zeros(M,M,M); 
for ml=l:M 
for m2=ml:M 
A=reshape(BB(:,:,ml,m2) \1,K2); 
for m3=m2 :M 

T(ml,m2,m3)=A*reshape(B(:,:,m3),K2,l); 
end, end, end 
for ml=l:M 
for m2=l:M 
for m3=l:M 
s=sort([ml. m2 no]); 
T(ml,m2,m3)=T(s(l),s(2),s(3)); 
end, end, end 
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T>=T*8; % MM; Third-Order Partial Derivatives 

F=zeros (M,M,M,M) ; 
for ml=l:M 
form2=ml:M 
A=reshape(BB(:, :,ml,m2) ' ,1,K2); 
for rri3=in2 :M 
Bl=reshape(BB(:,:,ml,iti3) ',1,K2); 
for m4=xri3 :M 
F (ml, m2, m3, m4) =A*reshape (BB (:,:, m3, m4)... 
+BB(:,:,m4,m3),K2,l)--. 
+Bl*reshape(BB(:,: ,m2,m4),¥2,1); 
end, end, end, end 
for ml=l:M 
for m2=l:M 
for m3=l:M 
for m4=l:M 
s=sort ([ml m2 m3 m4]) ; 
F(ml,m2,m3,m4)=F(s(l) ,s(2) ,s(3) ,s(4)) ; 
end, end, end, end 
F=F*16,-% ly&frfxMxM; Fourth-Order Partial Derivatives 

% CALCULATE CORRBCTIQN TERMS 
A2=zeros (M,M) ; 
M2=M*M; 
Hi=inv(H); % m& 
Hr=Hi(:)"; % lxM2 
for ml=l:M 
for m2=l:M 
A2 (ml,,m2) =Hr*reshape(F(:,: ,ml,m2) ,M2,1) ; 
end, end 
c4=Hr*A2(:)/S; 

Al=zeros(M,l); 
for m=l:M 
Al (m) =Hr*reshape (T (:,: ,m) ,M2,1) ; 
end 
c3a=-Alr*Hi*Al/8; 

A3=zeros(M,M,M) ,- 
for ml=l:M 
B2=Hi(:,ml) '; % j&l 
for m2=l:M 
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B3=Hi(:,m2); % ^L 
for m3=l:M 
A3 (ml,m2 ,m3) =B2*T (:,: ,m3) *B3 ; 
end, end, end 
B2=zeros(M,M); 
for ml=l:M 
B3=reshape(T(:,: ,ml) ,1,M2); 

for m2=l:M 
B2 (ml,m2)=B3*resh^)e(Ä3 (:,: ,m2) ,M2,1) ; 
end, end 
c3b=-Hr*B2(:)/12; 

Ct=c4+c3a+c3b;     % FTEST-ORDER OCRRECTICN TERM 
disp('c4   c3a   c3b   ct =') 
disp([c4 c3a c3b ct]) 
pc3fl=pc3fO*(l-K±); 
pdfe=pdfO*exp(ct) ; 
pdfb=pdfO*(l+ct/2)/(l-ct/2); 
t2=toc; 
disp(['t2(sec)  =  rmjm2str(t2)]) 
disp(['pdfO = 'num2str(pdf0)]) 
disp(['pdfl =  'num2str(pdfl)]) 
dispü'pdfe = 'num2str(pdfe)]) 
disp(['pdfb=  'nunßstr(pdfb)]) 
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